
Lua mode
Last Modified on 06/11/2019 11:01 am CET

BackgroundBackground

The X45e units (Ethernet version) can be used in more generic applications. This article focuses on
the Lua mode. It should be used if a functionality is required that is not part of the build in
functionalities. In this mode a Lua script controls the X45e unit (conveyor or function). It is possible
to store up to 10 scripts at the unit but only one can run at a time. It is not possible to call one script
from another. Password protection is available.

For deeper information please check the following manuals:

User documentation - Electrical System (X45e)
User documentation - Parameter Setting Tool

PrerequisitesPrerequisites

HardwareHardware
PC (Windows 7 or later)
X45e unit (with power cables)
Mini USB cable

SoftwareSoftware
X45e - Parameter Setting Tool

Software versionSoftware version

Make sure the unit has the latest software versions installed. Look at MyFlexLink under the
Download Area for information about the latest release. This article was written when the FEG
version 8.2.4 was the latest version. The PST version used is 3.4.1.

WizardWizard

To set the proper parameter setting to the X45e unit the wizard is a good help. This is started with
the command Change Node.



The first window in the wizard decides which standard (physical) type the unit should be set to. The
Lua option should be selected in this case.

The Network settings window can only be set to None. IP address is shown if already set.

Control settings window is the next popup window in the wizard. None of the choices (Enable-Reset,
Control, Variant, Interlock) could be set to anything else than default values.



The last popup window in the wizard is the IP settings window. Here a fixed IP address can be set.
Ethernet connection is required to use Lua editor. Otherwise only a file transfer via USB is possible.

After the wizard is completed the unit is updated with these settings (if working in Direct mode).
Then a reboot of the unit is required to initialize Lua mode in the unit.



All of the parameters in the settings windows are updated to the unit. If some of these parameters
should be changed this could be done via the Parameter Setting Tool.

There are two was available to get Lua script on the unit. Either Tools / Activities / Lua file handling
or Tools / Activities / Lua editor. Lua file handling requires USB connection while Lua editor requires
ethernet connection.

Lua file handlingLua file handling

Lua file handling is available with USB connection in menu Tools / Activities / Lua file handling. No
lua script is running while this panel is active.

Here you see the list of Lua scripts stored at the unit. The used (default) script is written bold. You
can send Lua files form computer to unit or read selected file from unit to computer. It is also



possible to delete selected file or set it as default. Password might be required.

Lua editorLua editor

Lua editor is a web-application served in PST and running in your browser. Computer and unit have
to be in same Ethernet network. Lua editor can be started in menu Tools / Activities / Lua
editor. Password might be required.

Lua editor connects automatically with unit and stops running Lua script. Here you see the list of Lua
scripts stored at the unit. The used (default) script is maked with '>'. You can create new files at unit,
modify existing files, delete or rename files. You can change the default scrip or run a script for
testing. Editor supports auto completion (CTRL + SPACE) containing standard Lua API and X45e
related API. Console printings from script are shown in logging area (lower area of editor). Editor
supports auto completion (CTRL + SPACE) containing standard Lua API and X45e related API.

Lua APILua API

Additional to standard API of Lua, X45e has an own API. It is supported in Lua editor.

General informationGeneral information

Lua script will be called once at end of initialization of unit. This should be used to initialize variables.
Script can register "execute" function which will be called periodically.

You can get time information from status library. Function get_time_ms returns system time in
milliseconds. Function get_counter of each state machine returns time in current state in
milliseconds.

Library dioLibrary dio

This library gives control over digital inputs and outputs.

DIO functions



create - returns access to pin with defined name
get_pin_names - returns list of available pin names

Metatable pin

Pin is used to read/write a digital input or output.

Pin functions

get - returns current state of pin
set - set new state to pin

Available inputs and outputs

Example code

pin = dio.create('DIGITAL_OUT_1')
pin:set(1)
state = pin:get()

Library configLibrary config

This library gives access to configuration parameters.

Config functions

create - returns access to parameter with defined name
get_parameter_names - returns list of available parameter names

Metatable parameter

Parameter is used to read current value of configuration parameter.

Parameter functions

get - returns current value of parameter

Available parameter



MOTOR_TYPE
FUNCTION_MODE
CALIBRATE
NODE_ID
SPEED_SET_POINT_2
SPEED_SET_POINT_1
TORQUE
RECEIVE_ANGLE_1
RECEIVE_ANGLE_2
RECEIVE_ANGLE_3
RELEASE_ANGLE_1
RELEASE_ANGLE_2
WAIT_ANGLE_1
WAIT_ANGLE_2
ACCELERATION_RAMP
DECELERATION_RAMP
ENABLE_DRIVE
RESET_ERRORS
DEBUG_MODE
FUNCTION_PARAM_1
FUNCTION_PARAM_2
FUNCTION_PARAM_3
FUNCTION_PARAM_4
REQUEST_ANGLE
PRE_TURN_DELAY
DURING_TURN_DELAY
POST_TURN_DELAY
AUTOMATIC_RESET_ERRORS
INTERLOCK_MODE
INTERLOCK_DELAY_ON
INTERLOCK_DELAY_OFF
ENABLE_DRIVE_RESET
ABUS_NETWORK_PROTOKOL
FEG_PROGRAM_MAJOR_VERSION
FEG_PROGRAM_MINOR_VERSION
FEG_PROGRAM_PATCH_VERSION
OPERATING_MOTOR_POWER
OPERATING_MOTOR_CURRENT
OPERATING_MOTOR_VOLTAGE
OPERATING_SECONDS
OPERATING_MINUTES
OPERATING_HOURS
OPERATING_DAYS



OPERATING_YEARS
OPERATING_CYCLES_HIGH
OPERATING_CYCLES_LOW
POSITIONER_MODE
POSITIONER_RATIO
FUNCTION_GROUP
FUNCTION_VARIANT
ECO_PROGRAM_VERSION
TEMPERATURE
DEBUG_ENABLE
LIMIT_SWITCH_WAIT
POS_REQ_ABSOLUTE_CLOSEST
POS_REQ_ABSOLUTE_CCW
POS_REQ_ABSOLUTE_CW
POS_REQ_RELATIVE
ECO_CURRENT_ANGLE_CCW
ECO_CURRENT_ANGLE_CW
IP_HANDLING_AUTOMATIC
IP_ADDRESS
IP_SUBNET_MASK
IP_GATEWAY
IP_DNS_SERVER

Example code

parameter = config.create('FUNCTION_PARAM_1')
value = parameter:get()

Library statusLibrary status

This library gives access to rated and current status of control and motor part as well as to state
machines.

Status functions

create_state - returns access to state with defined name
get_state_names - returns list of available state names
create_statemachine - returns access to state machine with defined name
get_statemachine_names - returns list of available state machine names
get_time_ms - returns current system time in milliseconds

Metatable state

State is used to read rated or current state of control or motor part. Each state contains a list of
values, while a value may consist of a number of bits.

State functions



get - returns state as list of values

Available states

CURRENT_STATE
Digital in (uint8)

Digital in 1 (bit 0)
Digital in 2 (bit 1)
Digital in 3 (bit 2)
Digital in 4 (bit 3)
Digital in 5 (bit 4)
Digital in 6 (bit 5)
Digital in 7 (bit 6)
Digital in 8 (bit 7)

Status (uint8)
Function state (bit 0 - 2)
Wait (bit 3)
In position (bit 4)
Reverse direction (bit 5)
Drive enabled (bit 6)
Errors cleared (bit 7)

Position (uint8)
Release angle 1 (bit 0)
Release angle 2 (bit 1)
Receive angle 1 (bit 2)
Receive angle 2 (bit 3)
Receive angle 3 (bit 4)
Wait angle 1 (bit 5)
Wait angle 2 (bit 6)

Error (uint8)
Over current (bit 0)
High UDC (bit 1)
Low UDC (bit 2)
PCB over temperature (bit 3)
Locked rotor (bit 4)
Internal fault (bit 5)
Output overload (bit 6)

RATED_MOTOR_STATE / CURRENT_MOTOR_STATE
Speed (int16)
Torque (int16)
Position (int32)
State (uint8)

Power enable (bit 0)
Power disable (bit 1)



Drive enable (bit 2)
Drive disable (bit 3)
Break enable (bit 4)
Break disable (bit 5)
Encoder enable (bit 6)
Encoder disable (bit 7)

Operational mode (uint8)
No operation (0)
Run (5)
Calibrate (6)
Speed (9)

Error (uint16)
Over current (1)
High UDC (5)
Low UDC (6)
PCB over temperature (8)
Locked rotor (10)
Internal fault (15)

Encoder angle (uint16)

Metatable statemachine

Statemachine is used to read and write current state of functional parts of motor. Each
statemachine contains current state and time since state change. It is recommended to use
MOTOR_STATEMACHINE at drive-unit and FUNCTION_STATEMACHINE at function-unit.

Statemachine functions

get_counter - returns millisecond counter since last state change
get_state - returns current state of this state machine
set_state - sets new state to this state machine

Available state machines



Example code

state = status. create_state ('CURRENT_STATE')
list = state:get()
error = list[4]
functionStateMachine = status.create_statemachine('FUNCTION_STATEMACHINE')
functionState = functionStateMachine:get_state()

Library controlLibrary control

This library allows to set speed, direction and angle to motor controller.

Control functions

create - returns access to feature with defined name
get_feature_names - returns list of available feature names

Metatable feature

Feature is used to set speed, direction and angle to motor controller.

Feature functions

set - set new value to feature

Available features

SPEED - motor speed between -360 and 360 rpm, recommended speed for drive motor
is -320 to -80 and 80 to 320
DIRECTION - next turn direction of function motor: 0 means clockwise; 1 means
counterclockwise
ANGLE - next target angle of function motor between -360 and 360 degree



Example code

feature = control.create('SPEED')
feature:set(150)

Library consoleLibrary console

This library allows to print information to console of Lua editor.

Console functions

print - prints the string

Example code

state = 1
con.print(“state: ”..state)

Library utilityLibrary utility

This library provides helpful utilities.

Utility functions

sleep - sleeps for x milliseconds
angle_for_position - calculates angle in degree from motor position
direction_closest_distance - returns turn direction to move closest distance between
to angles
in_position - returns if two angles are close enough to say position is reached

Example code

-- sleep 100 ms --
utility.sleep(100)

targetAngle = 90
motorPosition = 12345
motorAngle = utility. angle_for_position(motorPosition)
inPosition = utility.in_position(motorAngle, targetAngle)
direction = utility.direction_closest_distance(motorAngle, targetAngle)


