
Simulation components (Feeder, Changer &
InitializationPoint)
Last Modified on 06/11/2019 8:47 am CET

This article describes the simulation components Feeder, Changer
and InitializationPoint focusing on some simple examples. The User documentation (manual) is also
covering this area. These three components can be used to get a wide range of behaviours on a
system simulation, both in terms of visual appearance of the products but also how the products are
routed in a system.

Example 1: Replace (One-to-one)
The first example is a really simple case showing how products can change appearance at a certain
point.

The Feeder component is set to create products in the shape of a box. The InitList is not used
which results in products in the default color (Blue).

The Changer component is set to Change: All components. The Behaviour: OneToOne means
there is exactly the same amount of products before and after the component. The Mode: Replace
is set which will remove the incoming products and add the new product defined in the Changer
component.

Example 2: Remove (One-to-one)
The second example is a bit more features. Products are removed at the point of the changer.

The Feeder component is now using the InitList. This list is describing the destination route of each
product. The syntax is a separate row for each product route in the following format:

”nr of products”, ”color”, ”destination1”, “destination2”, …

The Feeder component will create all products of the first row and the read the second line. After all
lines are executed all lines are repeated continuously. The number of destination can be arbitrary.
In this example the destination is not used but in order to get products in a specific color the Feeder
has to be using the InitList. It will repeatedly create one red product with no specific destination.

1,red,

Then the Changer component is set to Mode: Remove. Still this is unconditional so it will remove all
products. The platform is also changed to a X85P which makes it more visible that the products are
removed from the pallets. There is also a setting to remove also the pallet if that is required.

Example 3: Add (One-to-one)
Next example is showing the how to add products to a pallet or puck.

This is done using the Mode: Add feature. This mode is only meaningful in pallet/puck systems. It
adds a product to an empty pallet/puck. It is in this example combined with a condition Change:
BasedOnID and the ProcessID is set to process2. The InitList on the Feeder component is used for
creating products with two different destinations each with a separate color:

1,red,process1

1,blue,process2

Also the option IncludeProduct is deselected. Because there is no product to paint with the color
(indicating the destination route) the whole pallet/puck gets the specified color. The result of this
setup is that the changer will add a product (bottle) to all blue pallets (which is heading for
process2).

Exemple 4: Batching
The batching function works on both pallet/pucks and ordinary conveyors.

To show batching the Feeder is set back to only create red boxes without any specific destination.
The Changer is set to Behaviour: Batching and no condition on the ID is used. To specify how
many products a batch is containing the BatchProducts is set to 2. For Pallet/pucks systems it is
possible to set if the empty pallet/puck should be removed (RemovePallet).

Example 5: Splitter
The splitter function works only on non pallet/pucks conveyors.

The splitter function works only on non pallet/pucks conveyors. The AmountOfProducts specifies
how many products is going to be removed in order to add one new product. In this case it is set to
3. The ProcessTime is set to 0.500 s which defines the time between the individual products after
the split.

Additional info about routing.
The products (mainly pallet/pucks with products) can have a predefined route. This is defined as a
list of destinations in the InitList. This list can be defined in the Feeder component but there is also a
separate InitializationPoint component doing exactly this. Even the Changer component can
update the routes if the ReInit option is set. Every individual products has a Pointer referring to the
current step in the list of destinations. The parameter ProdID is the next destination to be reached.
After reaching a process point the pointer is increased by one and the ProdID is updated according
to the predefined route. After reaching the last destination the InitList is starting over.

The InitializationPoint component adds an InitList to all products that doesn’t have one. It has also a
ProcessID so products can have the InitializationPoints as a destination step in the route. Then the
route will be overwritten with the new route.

